
PRACTICAL SOFTWARE™

Ar
rayList XFCN:
A Free HyperCard Utility
By Ari Halberstadt

ABSTRACT

An external function implementation of a general purpose list data structure for
HyperCard (on the Macintosh). The lists are manipulated as arrays, and basic
operations are provided on the arrays. Operations implemented include insert,
delete, search, sort, stack operations, and some set operations. ArrayList was written
to provide a fairly fast way of maintaining ordered lists in HyperTalk scripts. Source
code in C is included. The program is free; for distribution terms see the appropriate
sections in the file “Common Manual”.

This manual is intended for people who write scripts for HyperCard and who have
some understanding of arrays.

Copyright © 1990 Ari I. Halberstadt

Please see the more complete copyright notice in the file “Common Manual”, and
the sections on distribution in the same file, for details on how to freely distribute
this manual and the software it describes.

This copyright notice must be preserved on all copies of this file. If any changes are
made to this manual you must record them in the section containing the revision
history.

Contents

Sections

Using ArrayList
Subscripts

Writing subscripts
Subscript formats
Subscript format summary

Attributes
Sorted
Compare

Special operations
Set operations
Stack operations

Function descriptions
Syntax description notation
Functions

"!"
"?"
Add
BinSearch
Delete
Difference
Dispose
Error
Get
GetAttribute
GetDimension
Insert
Intersection
New
Pop
Push
QuickSort
Search
SeqSearch
Set
SetAttribute
SetDimension
ShellSort
Size
Sort
Top
Union

Limitations and bugs
Limitations
Known bugs

Version information
Changes from earlier versions

Future plans

Abou

t the program

Appendix A. Functions (by operation)

Appendix B. Function quick reference

Appendix C. Resources used

Appendix D. Revision history

Figures
Figure 1. Array with dimensions 10x10
Figure 2. Venn diagrams for the three set operators
Figure 3. Stack operations

Tables
Table 1. Subscripts
Table 2. Subscripts for New and SetDimension
Table 3. Attributes
Table 4. ArrayList limits
Table 5. Function quick reference
Table 6. Resources used
Table 7. Revision history

Scripts
Script 1. Build sorted list

Using ArrayList

Naming

Arrays are always referred to by a name, which may be any HyperTalk string
consisting of letters, underscores, and digits. As in HyperCard, capitalization does
not matter in a name; thus, "ARRAY" is considered the same as "array". (Unlike
HyperCard, case is important for characters with diacritics: "Å" is not the same as
"å".) An optional list of subscripts may follow the array's name.

Creating

Before an array is used it must be created using the New function. The array will
then continue to exist until it is explicitly disposed of using the Dispose function.
ArrayList maintains a single internal index to all trees created by it, which means
that all trees are globally accessible throughout your scripts.

Syntax

All functions implemented on an array are executed from a single XFCN. When
calling ArrayList, the basic syntax is
alist(function[, parameters])

The first parameter always selects the function to perform on the array; subsequent
parameters vary with each function.

Result

HyperCard expects an XFCN to return a value, and the calling script is required to
put this return value somewhere. Since all of the operations in this program are part
of a single XFCN, the script must always do something with the result returned,
even if nothing useful is returned. It's simplest to use HyperTalk's get keyword,
which will place the result into the temporary variable it. For instance,
get alist(add, array , "add me") -- adds item to array
if (it ≠ empty) then return it -- return error code
-- continue with script

Efficiency

The delay between the time an XFCN is called and the time it starts to execute can
be quite noticeable, especially when many calls are made to the XFCN. ArrayList
provides several means by which the number of individual calls may be reduced.
Specifically, it allows for a condensed form of passing or getting many parameters
from a single function. For instance, to retrieve a single item from an array, the
following statement could be used:
get alist(get, array[1])

whereas to retrieve the entire array the following statement is more efficient:
get alist(get, array)

The result in the latter statement will be a comma separated list of the items in the
array.

An inefficient way to execute some action on all the items in an array would be to
write a loop, as in the following script:
put alist(size, array) into sz
repeat with i=1 to sz

get alist(get, array[i])
put it -- do something to the i'th item

end repeat

A much more efficient way to accomplish the same thing is shown in the following
script:
put alist(size, array) into sz
put alist(get, array) into list
repeat with i=1 to sz

put item i of it -- do something to the i'th item
end repeat

The latter example is more efficient since it executes only two calls to ArrayList,
while the former executes size+1 calls to ArrayList. In general, operations which
only manipulate strings, as is done in the loop in the second script, are more efficient
than operations involving many calls to an external function. ArrayList is, however,
very efficient once it is up and running.

Subscripts

Subscripts are used to refer to specific items or ranges of items in an array. They are
also used to specify the dimensions of an array to the New and SetDimension
commands. Subscripts, if specified, always follow the name of an array. Each
subscript is enclosed by square brackets ([]). A list of subscripts may be given after
an array's name by placing one subscript after another. In such a list, the first
subscript corresponds to the first dimension of the array, the second subscript to the
second dimension of the array, and so on up to the last dimension of the array. For
instance, a single subscript would be written as
array_name[single_subscript]

a list of two subscripts (for an array with at least two dimensions) would be written
as

array_name[first_subscript][second_subscript]

and so on for higher dimensions.

Note: Since only one-dimensional arrays are currently supported, there may

only be one subscript following an array's name. Future versions will support
multiple subscripts, and the behavior of ArrayList's functions will depend on the
format used to specify a subscript. Multi-dimensional arrays and subscripts should
be fully backwards compatible with the current one-dimensional form. Material
discussing multi-dimensional arrays has been marked with a vertical bar to its left;
you may skip this marked material.

Syntax

Each subscript may specify a single item, or a range of items. Indexes in a subscript
are always integers, and are inclusive. Subscript ranges are specified using the three-
dots character (…), which is entered using Option-semicolon; do not use three
periods. Since subscripts are inclusive, a range such as 1…10 refers to items 1
through 10. Though the default subscript range is 1 to infinity, a subscript may also
be negative, provided that the correct range is specified to the SetDimension
command.

Internal index

Note: The information in this section is not essential to using ArrayList, so you
may skip to the next section.

Arrays are really stored as a single continuous, one-dimensional, list (hence the
name “ArrayList”). ArrayList calculates the actual index to an item from a given
subscript by multiplying the size of the current dimension by the given subscript
minus one, except for the last subscript which is simply added to the result. For
instance, if an array is created with
get alist(new, array3D[10][10][4])

then the list containing the actual array has 10*10*4 = 4000 items. When an item is
referred to in this array, using, for instance,
get alist(get, array3D[4][3][2])

then ArrayList retrieves the item whose internal index is
10*(4-1) + 10*(3-1) + (2-1) = 51

In the case of a one dimensional array, no multiplication is needed. For instance, if
an array is created with
get alist(new, array1D[10])

then the list containing the array has 10 items. When an item is referred to in this
array, using, for instance,
get alist(get, array1D[5])

then ArrayList retrieves the item whose internal index is
5 - 1 = 4

If any of the dimensions is negative, then ArrayList first adds an offset to the
subscript corresponding to the negative dimension, and then multiplies by the size of
the dimension. Thus, you could create an array with
get alist(new, arrayNegative[-4…4])

ArrayList will add 4 to the subscript, so that the item referred to in the following
statement
get alist(get, arrayNegative[0])

corresponds to the item whose internal index is
0 + 4 = 4

The following illustration shows a two dimensional array with dimensions 10x10:

Figure 1. Array with dimensions 10x10
 1 2 3 4 5 6 7 8 9 10
 1 0 1 2 3 4 5 6 7 8 9
 2 10 11 12 13 14 15 16 17 18 19
 3 20 21 22 23 24 25 26 27 28 29
 4 30 31 32 33 34 35 36 37 38 39
 5 40 41 42 43 44 45 46 47 48 49
 6 50 51 52 53 54 55 56 57 58 59
 7 60 61 62 63 64 65 66 67 68 69
 8 70 71 72 73 74 75 78 77 78 79
 9 80 81 82 83 84 85 86 87 88 89
10 90 91 92 93 94 95 96 97 98 99

Items in the above array have been numbered as they are indexed in the one-

dimensional list used internally by ArrayList. This list is always indexed from 0 up
to the size of the array, which is unlike the actual arrays, whose indexes start from 1.
For instance, the item with subscript
array[4][7]

is at index 36, since
10*(4-1) + (7-1) = 36

If the second subscript were omitted, then array[4] would refer to the entire fourth
row, which extends from index
10*(4-1) = 30

through
10*(4-1) + 9 = 39

Writing subscripts

I intended to use a modified form of the subscripting conventions of the C
programming language. In C, subscripts are written with square brackets, so that an
expression such as
array[3][2][1]

would refer to a specific item in a three dimensional array (C does not support
ranges in a subscript). Unfortunately, HyperCard does not allow this format, which
is used by several popular programming languages. For instance, the following
HyperTalk command will not work:
get alist(get, array[3…5])

HyperCard complains when it encounters the first square bracket. One solution is to
enclose the array and subscript in quotes:
get alist(get, "array[3…5]")

However, if the array's name is contained in a variable, then the variable must
remain unquoted, so we can use the following:
get alist(get, array&"[3…5]")

This format is still fairly easy to read, but if the subscripts are also contained in
variables we may be forced to use an even uglier form:
get alist(get, array & "[" & low & "…" & high & "]")

This format bears little resemblance to the originally intended format. Because
writing lines like the last example is somewhat tedious, I will use the original format
shown in the first example, omitting the quotes and ampersands, with the
understanding that in an actual program the subscripts will be written in a format
acceptable to HyperCard.

Your suggestions

I have been unable to arrive at a satisfactory method for specifying subscripts which
is simple to specify in HyperTalk and as flexible as the current method. I am still
exploring possibilities, and will be glad to receive any suggestions. Remember,
though, that any method employed must be compatible with arrays having more than
one dimension.

Subscript formats

Subscripts may have any one of the forms listed below. The description of each form
applies to all commands except New and SetDimension, which are described
after this list. Subscript ranges are specified using the three-dots character (…),
which is entered using Option-semicolon; do not use three periods.

array

A missing subscript always refers to the entire array, which is treated as one long list
of items. For instance, to get every item in an array, use:
get alist(get, array)

array[]

An empty subscript refers to the entire array, and is a synonym for a missing
subscript. This form of subscripting will be useful when more than one dimension is
supported, in which case an empty subscript will refer to the entire contents of the
corresponding dimension. You should avoid using this form (even for single-
dimensional arrays) since the behavior of ArrayList for multi-dimensional arrays is
not yet defined.

array[integer]

Refers to the indexed item only. This is equivalent to writing array[integer…
integer].

array[integer…]

Refers to the indexed item through the last item.

array[low…high]

Refers to items low through high.

array[…integer]

Refers to the first item through the indexed item.

array[…]

Refers to the first item through the last item. This is not the same as an empty or
missing subscript, and will have a specific meaning when multi-dimensional arrays
are supported.

Subscript format summary

The following tables show how subscripts are interpreted. The first table simply
summarizes the information given in the list above, while the second table shows
how the New and SetDimension commands interpret subscripts. Notice that a
call to the New command may be interpreted as a call to the New command
without any subscript, followed by a call to the SetDimension command with
whatever subscript is desired. For instance,
get alist(new, array[10])

is the same as
get alist(new, array)
get alist(setdimension, array[10])

Because of this equivalence, the second table describes the effects of the
SetDimension command only, with the understanding that the only difference
between it and the New command is that the New command first creates an empty
array, and then calls SetDimension.

Table 1. Subscripts

Form Evaluated As

no subscript A missing subscript refers to the entire array.
[] Entire array (avoid using this form until multi-dimensional

arrays are supported).
[i] The i'th item.
[i…] The i'th item through end of array.
[i…j] Items i through j.
[…i] The first item through the i'th item.
[…] Entire array (not the same as []; reserved for use in multi-

dimensional arrays).

The following table shows the effects of subscripts in the New and
SetDimension commands. The first column shows how the subscript is specified
to the New and SetDimension commands, and the second column shows the
permissible range for subscripts after the command has been executed. The symbol
n indicates an integer, and the symbol i indicates a subscript into the array.

Table 2. Subscripts for New and SetDimension

Form Range Evaluated As

[] no change No effect.

[n] 1 ≤ i ≤ n Array has dimensions 1 to n. If n is smaller
than the array's old size, then excess items are discarded,
while if n is greater than the array's old size, then empty items
are appended to the array.

[n…] n ≤ i ≤ ∞ Subscripts now range from n to infinity,
instead of their

previous range (the default is 1 to infinity). The size of the array isn't affected.

[a…b] a ≤ i ≤ b The array's size is set to |b-a| (the array's size is
adjusted as in the case of a "[n]" subscript). Subscripts may
range from a through b.

[…n] 1 ≤ i ≤ n This is the same as writing "[1…n]". Notice
that n must not be zero or negative.

[…] (undefined) Reserved for future use.

Attributes

Every array has some attributes used to modify the way an array behaves, add extra
functionality to an array, and make some operations more efficient. The functions
SetAttribute and GetAttribute are used to set and get the attributes' values.
Attributes may have different types, such as Boolean or integer. Every attribute also
has a default value that is set when an array is first used. Following is a table giving
the names, possible values, and default values for all of the attributes. Following the
table are descriptions of each of the attributes.

Table 3. Attributes

Name Values Default

Sorted True False
False

Compare Exact IgnoreCase
IgnoreCase
International
Numeric

Sorted

Indicates whether the array is sorted or not. Set automatically to true when the Sort
function is called on the entire array, and may be set to false by some functions if a
violation of sorted order is detected. When the attribute is true it modifies the
operation of some functions. For instance, the Search function uses binary search
if the array is sorted, otherwise it uses sequential sort. Functions that insert or delete
items generally work slightly slower when this attribute is true.

Note: You should only set this attribute to true if you know for a fact that the array
is sorted. If the array isn't sorted, but you have set the attribute to true, then
ArrayList may exhibit odd and erratic behavior, especially when searching for items.
When in doubt use the Sort function.

This attribute is most useful when you have some presorted data from which you
have formed an array. By setting the sorted attribute to true you can avoid the nned
to call the Sort function. Remember that the array must have been sorted according
to the exact same rules used by ArrayList, otherwise it is not in sorted order as
defined here. One safe method is to create a new empty

array, set the sorted attribute to true, and then add the supposedly sorted data. If the
data were indeed sorted correctly then the sorted attribute will still be true,
otherwise it will be false. Following is an example script:

Script 1. Build sorted list
function buildSorted list, data

get alist(new, list) -- create list
if (it = empty)
then get alist(setattribute, list, sorted, true)
if (it = empty)
then get alist(insert, list, data) -- set the data
if (it = empty and alist(getattribute, list, sorted) ≠ true)
then get alist(sort, list) -- sort list
return it

end buildSorted

Compare

The compare attribute controls the rules for comparing items when searching and
sorting. Descriptions of each of its possible values are given below.

The sorted attribute is automatically set to false when this attribute's value changes.

Exact

Items are compared exactly as they are, and ASCII ordering is used for sorting
items. For instance, the following items are in sorted order: "Aardvark, Hello, ^[\,
me, them, you". These ordering rules are obviously not suitable for sorting text.

IgnoreCase

Upper and lower case letters are correctly compared and sorted. When searching for
an item, distinctions between upper and lower case letters are ignored, so that
"UPPER" is considered the same as "upper". When sorting, letters will all be
grouped together, but upper case letters will come before lower case letters. For
instance, the following items are in sorted order: "aardvark,UPPER,Upper,upper".
Character case is not ignored for letters with diacritics, so that "å" is not the same as
"Å", even though "a" would be the same as "A".

International

Correctly compares and sorts non-English text containing diacritical marks and
special characters, depending on the international resources in your System file. This
is similar to the international style of HyperCard's sort command.

Numeric

Compares and sorts items numerically. Any white spaces preceding the items are
ignored (eg, spaces, tabs, returns). The comparison is first done on the numeric
component of the items, and then, if the items are equal, a sub-comparison is done
on any non-numeric characters following the items. For instance, the item “4a” is
smaller than the item “4b”. The capitalization of any extra characters is ignored, so
that the item “5B” would match the item “5b”.

Special operations

This section describes several special types of operations provided by ArrayList.

Set operations

Several set operations adapted from Pascal are provided by ArrayList. Currently
supported are the union, difference, and intersection of two sets. Each of these
operations is described with the corresponding function description, but will be
easier to understand with the aid of Venn diagrams, shown below.

Figure 2. Venn diagrams for the three set operators1

1E. Glinert, “Introduction to Computer Science Using Pascal”, Prentice-Hall, 1983, p. 228.

Stack operations

The three basic operations on stacks: push, top, and pop, are implemented by
ArrayList. These operations, however, will only work with one dimensional arrays.
The figure below shows the contents of a stack during the execution of the following
commands (the lines have been numbered for reference):
1 get alist(new, stack)
2 get alist(push, stack, "one")
3 get alist(push, stack, "two")
4 get alist(push, stack, "three")
5 put alist(pop, stack, 2) -- prints "three,two"
6 put alist(pop, stack) -- prints "one"
7 put alist(pop, stack) -- error, stack is empty
8 get alist(push, stack, "first,second,third", ",")
9 put alist(top, stack) -- prints "third"
Figure 3. Stack operations

Function descriptions

This section contains an alphabetical list of all of the functions implemented.

Syntax description notation

The syntax descriptions use the following typographic conventions2. Words or
phrases in typewriter type are to be typed literally to the computer, exactly as
shown. Words in italic type describe general elements, not specific names — you
must substitute the actual instances. Square brackets ([]) enclose optional elements
which may be included if you need them. Don't type the square brackets, and don't
confuse them with subscripts, since no subscripts are actually shown in syntax
descriptions, though they are implicitly allowed.

The word "array" in the syntax descriptions always refers to the name of an array.
Unless otherwise noted, subscripts may be appended to the names of arrays, as
described above in the section about subscripts. When a subscript is specified, it
limits a function's operation to the items indexed by the subscript. When no
subscript is specified the function operates on the entire array.

Some examples have brief comments showing the contents of the array. For
instance,
-- array="one,two,three"
get alist(delete, array[2])

-- array="one,three"

The equals sign simply means that the array contains the items shown. If you use the
Get function on the array, those are the items it would return.

Some functions may return an index into an array. This index can be used to refer to
the item. For instance, to retrieve an item matching a certain string, you could use
the following command
get alist(get, array&"["&alist(search, array, string)&"]")

in this example, the Search function returns an index to the item containing the
string, and the Get function uses this index to get the item.

Functions

"!"

2Adapted from “HyperCard Script Language Guide: The HyperTalk Language”, Addison-Wesley (1988).

Syntax

string alist("!")
Description

Returns a string giving the version of ArrayList, the full name of the program, the
author, a copyright notice, and the date and time of compilation. The string has the
basic form “Version 0.9, ArrayList XFCN, by Ari Halberstadt, Copyright © 1990,
date time”.

Examples

get alist("!")

"?"

Syntax

string alist("?")
Description

Returns a string giving the a brief summary of the functions and calling methods for
ArrayList.

Examples

get alist("?")

Add

Syntax

error alist(Add, array, string[, separator])
Description

Adds the string to array. If the sorted attribute is false then adds the string to the
end of array, otherwise the string is inserted at its correct position in array so as to
maintain sorted order. If separator parameter is given then Add is called on all
substrings of the string delimited by the separator character.

Notes

This function only works with one-dimensional arrays.

Examples

-- array is initially empty
get alist(add, array, "Item3")

-- array="Item3"
get alist(add, array, "Item1")

-- array="Item3,Item1"
get alist(sort, array)

-- array="Item1,Item3"
get alist(add, array, "Item2,Item0", ",")

-- array="Item0,Item1,Item2,Item3"

BinSearch

Syntax

index alist(BinSearch, array, string)
Description

Uses the binary search algorithm to search array for an item matching string. The
range of items being searched should be in sorted order; if the items aren't sorted
then the function will not work correctly.

The binary search algorithm can locate an item in an array in time proportional to
O(lgN).

See the description of the Search command for more details.

Notes

If more than one item could match string, then BinSearch is not guaranteed to
return the first item in the sequence that matches string. Instead, BinSearch may
return any item in the list. For instance, if part of the array contains
"Joe,Mary,Mary,Mary,Samantha", and string is "Mary", then BinSearch could
return an index to the first, second, or third instance of "Mary". In future versions,
BinSearch may return the first item in such a sequence.

Delete

Syntax

error alist(Delete, array)
Description

Deletes items from array. If no subscript is given then all items in array are
deleted; otherwise, only the subscripted items are deleted.

Examples

-- Array initially contains "Item1,Item2,Item3,Item4"
get alist(delete, array[2])

-- now array contains "Item1,Item3,Item4"
get alist(delete, array[2…3])

-- now array contains "Item1"
get alist(delete, array[1])

-- array is now empty

Difference

Syntax

error alist(Difference, array1, array2, array3)
Description

Places the difference of array2 from array1 into array3. Both array1 and
array2 must exist; array3 is created to hold the results. The difference of two
arrays is defined as the set of items in array1 that are not in array2.

Notes

Subscripts may be used to limit the range of items selected from array1 and array2,
but any subscript used with array3 is ignored. Each range of items referred to by the
subscripts specified for array1 and array2 should be in sorted order, and array1 and
array2 should use the same comparison rules (e.g., both should use exact,
ignorecase, international, or numeric). If either list isn't sorted then the operation
will not place the correct items into array3.

Array3 will be very close to sorted order; if you want to sort it you should use the
ShellSort function. Also, array3 will have the default array attributes.

Examples

Following is a short script which puts "0,5,6,7" into the message box.
on demoDifference

get alist(new, array1)
get alist(new, array2)
get alist(insert, array1, "0;3;4;5;6;7", ";")
get alist(insert, array2, "1;2;3;4", ";")
-- array1="0,3,4,5,6,7" and array2="1,2,3,4"
get alist(difference, array1, array2, array3)
put alist(get, array3)

end demoDifference

Dispose

Syntax

error alist(Dispose, array)
Description

Completely disposes of all the items in array and of array itself. Use this function
when completely finished with an array.

Notes

Any subscripts are ignored.

Examples

get alist(dispose, array) -- array ceases to exist

Error

Syntax

error alist(Error)
Description

Returns the number of the error set by the last function executed. If the last function
was executed successfully, then returns empty.

Examples

get alist(error)

Get

Syntax

string alist(Get, array[, separator]])
Description

Returns items in array. If no subscript is given, then returns the entire contents of
array, otherwise returns the subscripted items. If more than one item is returned,

then each item is separated by a comma (,), unless separator is given, in which
case that character is used to separate the items.

Examples

-- Array contains "Item1,Item2,Item3,Item4"
get alist(get, array[2])

-- Returns "Item2"
get alist(get, array[2…4])

-- Returns "Item2,Item3,Item4"
get alist(get, array[2…3], ":")

-- Returns "Item2:Item3"

GetAttribute

Syntax

string alist(GetAttribute, array, attribute)
Description

Returns the value of the named attribute. See descriptions of array attributes for
more details.

Notes

The type of the returned value depends on the type of the attribute.

Examples

get alist(getattribute, array, sorted)
get alist(getattribute, array, compare)

GetDimension

Syntax

alist(GetDimension, array)
Description

Returns the dimensions of array, as set when the array was created using the New
function or by the SetDimension function. The dimensions are returned in the
form of a comma separated list of items. Each item contains the size of the
corresponding dimension.

Notes

The format of the data returned by this function have not been finalized.

Examples
-- array has dimensions 10*7
get alist(GetDimension, array)

-- Returns "10,7"
-- array is one dimensional, and has 10 items
get alist(GetDimension, array)

-- Returns "10"

Insert

Syntax

error alist(Insert, array, string[, separator])
Description

If no subscript is specified then string is inserted before the first item in array.
Otherwise, string is inserted before the subscripted item. If separator is given
then every substring in the string delimited by the separator character is inserted in
turn into array. If the sorted attribute is true and the insertion would result in a
violation of sorted order then the sorted attribute is set to false.

Notes

To append an item to an array use a subscript equal to the size of the array plus 1.

The subscript may range from 1 to the size of the array plus 1. In the latter case the
inserted items are appended to the end of the array. This feature was included to
allow for insertion into an empty array (in which the size is 0 and the index is 1).

Examples

-- Array initially contains "Item1,Item3"
get alist(insert, array[2], "Item2")

--array="Item1,Item2,Item3"
get alist(insert, array[2], "ItemX:ItemY", ":")

--array="Item1,ItemX,ItemY,Item2,Item3"
get alist(insert, array[6], "Appended")

--array="Item1,ItemX,ItemY,Item2,Item3,Appended"
get alist(insert, array, "First")

--array="First,Item1,ItemX,ItemY,Item2,Item3,Appended"

Intersection

Syntax

error alist(Intersection, array1, array2, array3)
Description

Places the intersection of array1 and array2 into array3. Both array1 and
array2 must exist; array3 is created to hold the results. The intersection of two
arrays is defined as the set of items that are in both array1 and array2.

Notes

Subscripts may be used to limit the range of items selected from array1 and array2,
but any subscript used with array3 is ignored. Each range of items referred to by the
subscripts specified for array1 and array2 should be in sorted order, and array1 and
array2 should use the same comparison rules (e.g., both should use exact,
ignorecase, international, or numeric). If either list isn't sorted then the operation
will not place the correct items into array3.

Array3 will be very close to sorted order; if you want to sort it you should use the
ShellSort function. Also, array3 will have the default array attributes.

Examples

Following is a short script which puts "3,4" into the message box.
on demoIntersection

get alist(new, array1)
get alist(new, array2)
get alist(insert, array1, "0;3;4;5;6;7", ";")
get alist(insert, array2, "1;2;3;4", ";")
-- array1 = "0,3,4,5,6,7" and array2 = "1,2,3,4"
get alist(intersection, array1, array2, array3)
put alist(get, array3)

end demoIntersection

New

Syntax

error alist(New, array)
Description

Creates a new array. This function must be called before an array can be used. If no
subscript is specified then the array is empty; otherwise, the array's dimensions are
set to those specified in the subscript.

Notes

If no upper limit is specified for the size of an array, then some functions, such as
insert, add, and set, may expand the array's size. If an upper limit is specified, then
no expansion is possible without redimensioning the array.

Multi-dimensional arrays are not yet supported. When they are, the array's size will
be set to the product of the dimensions.

Examples
get alist(new, array)

-- creates an empty one-dimensional array, and all
-- subscripts must be from 1 through the current

-- size of the array.
get alist(new, array[4])

-- new array has 4 empty items, and all subscripts
-- must be from 1 through 4.

Pop

Syntax

string alist(Pop, array[, count, [separator]])
Description

Pops and returns the top element of the stack formed by array. If count is given,
then Pop is called repeatedly for count items. Items are separated by commas (,)
unless separator is given, in which case that character is used to separate items.

Notes

This function only works with one-dimensional arrays.

Examples
-- Initially array is "one,two,three,four"
get alist(pop, array)

-- Returns "four"; array="one,two,three"
get alist(pop, array, 2, ":")

-- Returns "three:two"; array="one"

Push

Syntax

error alist(Push, array, string[, separator])
Description

Pushes string onto the stack formed by array. If separator is given then every
substring in the string delimited by the separator character is pushed in turn onto
array. If the sorted attribute is true and the operation would result in a violation
of sorted order then the sorted attribute is set to false.

Notes

This function only works with one-dimensional arrays.

Examples
-- Array is initially empty
get alist(push, array, "one")

-- array="one"
get alist(push, array, "two;three", ";")

-- array="one,two,three"

QuickSort

Syntax

error alist(QuickSort, array)

Description

Uses the quick sort algorithm to sort array, regardless of the state of the sorted
attribute.

The average case performance of quick sort is O(NlgN). This version of quick sort
utilizes several enhancements over a naive implementation, which save between
20% and 30% of the running time, in addition to making worst case performance of
O(N2) — which in a naive implementation could occur when sorting an already
sorted array — very unlikely to occur. Despite these enhancements, the shell sort
algorithm tends to be faster for presorted data.

Notes

The order in which items are sorted depends on the value of the compare attribute.

The sorted attribute is set to true only if the entire array is specified to the
QuickSort function.

Examples
get alist(quicksort, array)

-- sorts the entire array

-- sorted attribute is set to true
get alist(quicksort, array[3…10])

-- sorts items 3 through 10
-- sorted attribute is unchanged

Search

Syntax

index alist(Search, array, string)
Description

Searches array for an item matching string, and returns an index describing the
location of the item in the array, or empty if string isn't found. If no subscript is
given then the entire array is searched, otherwise only the subscripted range is
searched. If the sorted attribute is true then Search uses binary search to locate
the item, otherwise it uses sequential search.

Notes

THE FORMAT OF THE DATA RETURNED BY THIS FUNCTION HAS NOT BEEN
FINALIZED. The subscript returned is in the form of a list of items, where the first
item corresponds to the first dimension, the second item to the second dimension,
etc. Thus, a search in a one dimensional array will always return a single number, a
search in a two dimensional array will return two numbers, etc.

Examples

-- Array contains "Item1,Item2,Item3,Item4"
get alist(search, array, "Item2") -- Returns 2
get alist(search, array, "Item7") -- Returns empty

get alist(search, array[1…3], "Item4") -- Returns empty

SeqSearch

Syntax

index alist(SeqSearch, array, string)

Description

Uses the sequential search algorithm to search array for an item matching string.

The sequential search algorithm can locate an item in an array in O(N) time, and
typically locates items in O(N/2).

See description of the Search command for more details.

Set

Syntax

error alist(Set, array, string[, separator])
Description

Replaces the value of the subscripted item in array with string. If separator is
given, then Set is called on all substrings delimited by the separator in the string,
starting at the subscripted item and advancing the subscript by one for each
substring. If the sorted attribute is true and the operation would result in a violation
of sorted order, then the sorted attribute is set to false.

Examples
-- Array initially contains "Item1,Item3".
get alist(set, array[1], "ItemX")

-- array="ItemX,Item3"
get alist(set, array[1], "ItemY:ItemZ", ":")

-- array="ItemY,ItemZ"

SetAttribute

Syntax

string alist(SetAttribute, array, attribute, value)
Description

Sets the value of the named attribute. See descriptions of array attributes for more
details.

Notes

The type of the value parameter depends on the type of the attribute.

Examples

get alist(setattribute, array, sorted, false)
get alist(setattribute, array, compare, numeric)

SetDimension

Syntax

error alist(SetDimension, array)
Description

Sets the dimensions of array to correspond with the given subscripts. If the total
size of array is reduced then extra items are discarded, while if array expands
then empty items are appended. This command is similar to the New command,
except that it works on an existing array.

ShellSort

Syntax

error alist(ShellSort, array)

Description

Uses the shell sort algorithm to sort the array, regardless of the state of the sorted
attribute.

The shell sort algorithm's expected average performance is O(N3/2). Shell sort will
provide fairly good average case performance, though it is almost always slower
than quick sort when applied to random data, whose average performance is
O(NlgN). When applied to presorted data shell sort may be faster than quick sort.

Notes

The order in which items are sorted depends on the value of the compare attribute.

The sorted attribute is set to true only if the entire array is specified to the
ShellSort function.

Examples
get alist(shellsort, array)

-- sorts the entire array

-- sorted attribute is set to true
get alist(shellsort, array[3…10])

-- sorts items 3 through 10
-- sorted attribute is unchanged

Size

Syntax

integer alist(Size, array)
Description

Returns the number of items in array. An empty array has zero items, and an array
with dimensions 3 by 5 has 15 items.

Examples

get alist(size, array)

Sort

Syntax

empty alist(Sort, array)
Description

Sorts the array. If the entire array is specified to the sort command, and if the
sorted attribute is false, then the quick sort algorithm is used, otherwise the shell
sort algorithm is used.

Notes

The order in which items are sorted depends on the value of the compare attribute.

The sorted attribute is set to true only if the entire array is specified to the Sort
function.

Examples
get alist(sort, array)

-- sorts the entire array

-- sorted attribute is set to true
get alist(sort, array[3…10])

-- sorts items 3 through 10
-- sorted attribute is unchanged

Top

Syntax

string alist(Top, array[, count, [separator]]
Description

Returns the top element of the stack formed by array. If count is given, then Top
is called repeatedly for count items. Items are separated by commas (,) unless
separator is given, in which case that character is used to separate items.

Notes

Can be used to get the items of an array in reverse order by using the following
statement:

get alist(top, list, alist(size, array))

It is an error to request the top item of an empty array.

This function only works with one-dimensional arrays.

Examples

-- List is "one,two,three,four"
get alist(top, array)

-- Returns "four"
get alist(top, array, 3, ":")

-- Returns "four:three:two"

Union

Syntax

error alist(Union, array1, array2, array3)
Description

Places the union of array1 and array2 into array3. Both array1 and array2
must exist; array3 is created to hold the results. The union of two arrays is defined
as the set of items that are either in array1 or array2 or both.

Notes

Subscripts may be used to limit the range of items selected from array1 and array2,
but any subscript used with array3 is ignored. Each range of items referred to by the

subscripts specified for array1 and array2 should be in sorted order, and array1 and
array2 should use the same comparison rules (e.g., both should use exact,
ignorecase, international, or numeric). If either list isn't sorted then the operation
will not place the correct items into array3.

Array3 will be very close to sorted order; if you want to sort it you should use the
ShellSort function. Also, array3 will have the default array attributes.

Examples

Following is a short script which puts "0,1,2,3,4,5,6,7" into the message box.
on demoUnion

get alist(new, array1)
get alist(new, array2)
get alist(insert, array1, "0;3;4;5;6;7", ";")
get alist(insert, array2, "1;2;3;4", ";")
-- array1 = "0,3,4,5,6,7" and array2 = "1,2,3,4"
get alist(intersection, array1, array2, array3)
put alist(get, array3)

end demoUnion

Limitations and bugs

This section describes any limitations on the size and number of data that the
program may manipulate. Also discussed are any known bugs, with suggested ways
to work around them.

Limitations

This section lists various minimum and maximum sizes for arrays. All limits may be
smaller depending on the availability of memory and other computer resources. It is
unlikely ArrayList will actually encounter an error associated with the exhaustion of
available memory since HyperCard is more likely to quit first.

In the following table, the value represented by Integer is 32,767 and the value
represented by LongInt is 2,147,483,647.

Table 4. ArrayList limits

Item Limit

Number of arrays LongInt
Items in an array LongInt
Length of an item LongInt

Known bugs

This section is included for updates on possible and real bugs, and for the
dissemination of temporary solutions. Pseudo-bugs will also be reported here (a
pseudo-bug is defined as “weird behavior deriving from the correct definition of the
software”).

• Since this program is still under development, not all of the features described in
this manual are fully implemented or defined. This will mostly affect the
operation of subscripts and the treatment of multi-dimensional arrays.

Version information

This section describes features that have changed from previous versions. Also
discussed are plans for the future of this program.

Changes from earlier versions

This is the first version, so there have been no changes.

Future plans

I intend to add a capability for multi-dimensional arrays. This will be a simple
extension of the features already implemented.

Also in the works is a method for maintaining a stack of groups of arrays. This will
facilitate local arrays within handlers, where one push is done at the start of a
handler and one pop is done before the same handler exits. This scheme will also
support global arrays, so that it will most likely be backwards compatible with the
current version of ArrayList.

I may add another value to the compare attribute for comparing text. This attribute
would ignore punctuation, and other non-text characters. I may also implement
multi-field comparisons, so that you can sort and search on more than one field
within a single item.

About the program

«SECTION NOT YET AVAILABLE»

Appendix A. Functions (by operation)

This section lists the functions implemented according to the operations they
perform.

Getting information about ArrayList
string alist("!")
string alist("?")
Getting errors
error alist(Error)
Creating and disposing of arrays
error alist(New, array)
error alist(Dispose, array)
Inserting and deleting items
error alist(Insert, array, string[, separator])
error alist(Delete, array)
Adding items
error alist(Add, array, string[, separator])
Getting and setting items
string alist(Get, array[, separator])
error alist(Set, array, string[, separator])
Getting size of arrays
integer alist(Size, array)
Getting and setting dimensions
error alist(GetDimension, array)
error alist(SetDimension, array)
Getting and setting array attributes
string alist(GetAttribute, array, attribute)
error alist(SetAttribute, array, attribute, value)
Searching
index alist(Search, array, string)
index alist(BinSearch, array, string)
index alist(SeqSearch, array, string)
Sorting
empty alist(Sort, array)
empty alist(QuickSort, array)
empty alist(ShellSort, array)

Set operations
error alist(Union, array1, array2, array3)

error alist(Difference, array1, array2, array3)
error alist(Intersection, array1, array2, array3)
Stack operations
error alist(Push, array, string, [separator])
string alist(Pop, array, [count, [separator]])
string alist(Top, array, [count, [separator]])

Appendix B. Function quick reference

The following table is an alphabetic list of all of the functions implemented, the
types of data they return, and their syntax.

Table 5. Function quick reference

Returns Syntax

string alist("!")
string alist("?")
error alist(Add, array, string[, separator])
index alist(BinSearch, array, string)
error alist(Delete, array)
error alist(Difference, array1, array2, array3)
error alist(Dispose, array)
error alist(Error)
string alist(Get, array[, separator]])
string alist(GetAttribute, array, attribute)
error alist(GetDimension, array)
error alist(Insert, array, string[, separator])
error alist(Intersection, array1, array2, array3)
error alist(New, array)
string alist(Pop, array, [count, [separator]])
error alist(Push, array, string, [separator])
error alist(QuickSort, array)
index alist(Search, array, string)
index alist(SeqSearch, array, string)
error alist(Set, array, index, string[, separator])
error alist(SetAttribute, array, attribute, value)
error alist(SetDimension, array)
empty alist(ShellSort, array)
integer alist(Size, array)
empty alist(Sort, array)

string alist(Top, array, [count, [separator]])
error alist(Union, array1, array2, array3)

Appendix C. Resources used

This appendix gives a complete list of resources needed by this program. These
resources must be installed in your stack for the program to work (see the section on
installation in the common manual).

The following table lists the resources with their default IDs and names, along with
a short description of the data contained in each resource and how the resource is
used by the program. The resource of type TABL is described in the common
manual.

Table 6. Resources used

Type Name Description

XFCN alist The little XFCN whose purpose
it is to load, lock, and call the PROC resource.

PROC ArrayList The resource containing the
executable code.

STR# ArrayList:ResourceMap Map of resources
used by ArrayList.

STR# ArrayList:Info Version and usage information.
TABL ArrayList:Functions Names of the functions.
TABL ArrayList:Attributes Names of the attributes.
TABL ArrayList:Compares Names of comparison

methods.

Appendix D. Revision history

This section is to be used for recording any changes made to this manual. This is
necessary since I do not want inconsistencies or mistakes introduced by others to
reflect on my reputation, and, if the revisions improve this product, then the person
who made the improvements should receive full credit. For consistency, please enter
dates as Year-Month-Day.

Table 7. Revision history

Date Name Comments

90-07-18 Ari Halberstadt This is an example entry
90-07-11 Ari Halberstadt Version 0.9

